Full test-1 2020

1. With which of the given pairs CO_{2} resemble
(a) $\mathrm{HgCl}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$ (b) $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{4}$ (c) $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{NO}_{2}$ (d) $\mathrm{N}_{2} \mathrm{O}$ and NO_{2}
2.Which of the following is Lewis acid
(a) BF_{3} (b) NH_{3} c) PH_{3} (d) SO_{2}
3.Which type of bond is present in $\mathrm{H}_{2} \mathrm{~S}$ molecule
(a)Ionic bond(b)Covalent bond(c)Co-ordinate(d)All of three
2. $\mathrm{H}_{2} \mathrm{~S}$ is more acidic than $\mathrm{H}_{2} \mathrm{O}$, due to
(a) O is more electronegative than S
(b) $O-H$ bond is stronger than $S-H$ bond
(c) $O-H$ bond is weaker than $S-H$ bond
(d)None of these
5.0xygen molecule exhibits
(a)Paramagnetism(b)Diamagnetism
(c)Ferromagnetism(d)Ferrimagnetism
3. Which one is known as oil of vitriol
(a) $\mathrm{H}_{2} \mathrm{SO}_{3}$ (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ (d) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
7.Aqueous solutions of hydrogen sulphide and sulphur dioxide when mixed together, yield
(a)Sulphur and water(b)Sulphur trioxide and water
(c)Hydrogen peroxide and sulphur(d)Hydrogen and sulphurous acid
8.An example of a neutral oxide is
(a) NO
(b) CO_{2} (c) CaO
(d) ZnO
9.The metal that is extracted from sea water is
(a) Ba (b) Mg (c) Ca (d) Sr
10.All the s-block elements of the periodic table are placed in the groups ...
(a)I A and II $A(\mathrm{~b}) \mathrm{III} A$ and IV $A(\mathrm{c}) B$ sub groups(d)V A to VII A
11.The electronic configuration of halogen is
(a) $n s^{2} n p^{6}$ (b) $n s^{2} n p^{3}$ (c) $n s^{2} n p^{5}$ (d)
(d) $n s^{2}$
12.Synthetic detergents are more effective in hard water than soaps because
(a)They are highly soluble in water
(b)Their Ca^{++}and Mg^{++}salts are water soluble
(c)Their Ca^{++}and Mg^{++}salts are insoluble in water
(d)None of these
13.The IUPAC name of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
(a)Potassium hexacyanoferrate (II)
(b)Potassium ferrocyanide
(c)Tetrapotassium hexacyanoferrate (II)
(d)Tetrapotassium ferroushexacyanide (II)
14.The effective atomic number of cobalt in the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is
(a)36
(b) 33
(c)24
(d) 30
15.In the coordination compound, $K_{4}\left[N i(C N)_{4}\right]$ oxidation state of nickel is
(a) -1
(b)
0 (c) +1
(d) +2
4. KMnO_{4} in basic medium is reduced to
(a) $\mathrm{K}_{2} \mathrm{MnO}_{4}$
(b) MnO_{2}
(c) $\mathrm{Mn}(\mathrm{OH})_{2}$
(d) Mn^{2+}
17.When CuSO_{4} is hydrated, then it becomes
(a)Acidic(b)basic (c)Neutral(d)Amphoteric
18.Froth floatation process is used for the concentration of
(a)Oxide ores(b)Sulphide ores(c)Chloride ores(d)Amalgams
19.The salt used for performing 'bead' test in qualitative inorganic analysis is
(a) $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ (b) $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (d) $\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}$
20.Attacking or reactive or electrophilic species in nitration of benzene is or In the nitration of benzene with concentrated HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ the attack on ring is made by
(a) NO_{2}^{-}(b) NO_{2}^{+}(c) NO_{3}^{-}(d) NO_{2}
21.Nitration of benzene by nitric acid and sulphuric acid is
(a)Electrophilic substitution(b)Electrophilic addition
(c)Nucleophilic substitution(d)Freeradical substitution
22.How is
 is widely used
(a)Insecticide(b)Drug(c)Explosive(d)Dye
23.The compound most likely to decolourize a solution of potassium permanganate is
(a) $\mathrm{CH}_{3} \mathrm{CH}_{3}$
(b)

(c) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
(d)

$\stackrel{+}{N} \equiv N B F_{4}$
5.

In the above process product A is
(a)Fluorobenzene (b) Benzene(c) 1, 4-difluorobenzene(d) 1, 3-difluorobenzene
25.Carbocation which is most stable
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$
(b) $\mathrm{CH}_{3}{ }^{+}$(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$
${ }^{+}$(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$
26.Tautomerism is exhibited by
(a) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNO}$ (b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ (c) $\mathrm{R}_{3} \mathrm{CNO}_{2}$ (d) $\mathrm{RCH}_{2} \mathrm{NO}_{2}$
27.Chlorobenzene is prepared commercially by
(a)Raschig process (b)Wurtz Fitting reaction
(c)Friedel-Craft's reaction (d)Grignard reaction
28. $\mathrm{CH}_{3}-\underset{\mathrm{U}}{\mathrm{C}-\mathrm{CH}_{2}}-\mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{NaOH}} A$,
product ' A ' in the reaction is
(a) $\mathrm{CH}_{3} \mathrm{COOH}$ (b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$
29.Which one of the following compounds is prepared in the laboratory from benzene by a substitution reaction
(a)Glyoxal(b)Cyclohexane(c)Acetophenone(d)Hexabromo
30. $\mathrm{CH}_{3}-\mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{A}$; Compound A on hydrolysis gives
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$ (b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{COOH}$ (d) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{COOH}$
31.Which one does not give cannizzaro's reaction
(a)Benzaldehyde (b)2-methyl propanal
(c) p-methoxy benzaldehyde (d)2,2 dimethyl propanal
32. When condensation product of hexamethylenediamine and adipic acid is heated to $553 \mathrm{~K}\left(80^{\circ} \mathrm{C}\right)$ in an atmosphere of nitrogen for about 4-5 hours, the product obtained is
(a)Solid polymer of nylon 66 (b)Liquid polymer of nylon 66
(c)Gaseous polymer of nylon 66 (d)Liquid polymer of nylon 6
33.Acetyl bromide reacts with excess of $\mathrm{CH}_{3} \mathrm{MgI}$ followed by treatment with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ gives
(a)2-methyl-2-propanol(b)Acetamide
(c)Acetone(d)Acetyl iodide
34.What is obtained when chlorine is passed in boiling toluene and product is hydrolysed
(a) o-Cresol(b)p-Cresol(c)2, 4Dihydroxytoluene(d)Benzyl alcohol
35.The main structural feature of proteins is
(a)The ester linkage(b)The ether linkage
(c)The peptide linkage(d)All of these
36.Pepsin enzyme hydrolyses
(a)Proteins to amino acids(b)Fats to fatty acids
(c)Glucose to ethyl alcohol
(d)Polysaccharides to monosaccharides
37. Number of isomeric primary amines obtained from $C_{4} H_{11} N$ are
(a)3
(b) 4
(c) 5
(d) 6
38. Which one of the following is known as broad spectrum antibiotics
(a)Streptomycine(b)Ampicilli(c)Chloramphenicol(d)Penicillin G
39.Camphor is often used in molecular mass determination because
(a)It is volatile (b)It is solvent for organic substances
(c)It is readily available (d)It has a very high cryoscopic constant
40.According to law of mass action rate of a chemical reaction is proportional to
(a)Concentration of reactants(b)Molar concentration of reactants
(c)Concentration of products (d)Molar concentration of products
41.Of all the three common mineral acids, only sulphuric acid is found to be suitable for making the solution acidic because
(a)It does not react with KMnO_{4} or the reducing agent
(b)Hydrochloric acid reacts with KMnO_{4}
(c)Nitric acid is an oxidising agent which reacts with reducing agent(d)All of the above are correct
42. The molar heat capacity of water at constant pressure is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increases in temperature of water is
(a)6.6 $K(b) 1.2 K(c) 2.4 K(d) 4.8 K$
43. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio of $1: 1$: 0.5 and $\Delta_{f} H$ for the formation of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mole}^{-1}$. The bond dissociation energy of X_{2} will be
(a) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
44.If $3 A \rightarrow 2 B$, then the rate of reaction of $+\frac{d(B)}{d t}$ is equal to
(a) $+2 \frac{d(A)}{d t}(\mathrm{~b})-\frac{1}{3} \frac{d(A)}{d t}(\mathrm{c})-\frac{2}{3} \frac{d(A)}{d t}(\mathrm{~d})-\frac{3}{2} \frac{d(A)}{d t}$
45.Equimolar solutions in the same solvent have
(a)Same boiling point but different freezing point
(b)

Same freezing point but different boiling point
(c) Same boiling and same freezing points
(d) Different boiling and different freezing points

Biology

46. The basic unit of classification /taxonomy is
(a)Genus
(b)Species(c)Family (d)Order
47.Which is a taxon
(a)Genera(b)Family(c)Class(d)None of these
48.Transformation experiment was performed on which of the following bacteria
(a)E. coli
(b)Salmonella(c)Pasturellapestis(d)Diplococcus pneumoniae
49.Viral genome incorporated and integrates with bacterial genomes is refer to as
(a)Prophages
(b)RNA(c)DNA
(d)Both (b) and (c)
50.When a fresh-water protozoan possessing a contractile vacuole, is placed in a glass containing marine water, the vacuole will
(a)Increase in size(b)Decrease in size
(c)Increase in number(d)Disappear
51.Which is false for nutrition in Amoeba
(a)Omnivorous(b)Pseudopodia feeder
(c)Holozoic nutrition(d)Photoautotroph
52.Which is not related with the sexual reproduction in protozoans
(a)Cytogamy(b)Autogamy(c)Conjugation(d)Schizogony
53.Fibres are obtained from
(a)Xylem, phloem and sclerenchyma
(b)Xylem, phloem, sclerenchyma and epidermis
(c)Xylem, parenchyma, epidermis
(d)Xylem, parenchyma, endodermis
54.Starch is mainly manufacture by
(a)Palisade parenchyma(b)Spongy parenchyma
(c)Guard cells(d)Vascular bundle
55.Ginger plant has an underground stem which is
(a)Rhizome(b)Bulb(c)Tuber (d)Corm
56.Green leaf-like one internode long stem branches are called
(a)Phylloclades (b)Phyllodes(c)Bulbils (d)Cladodes
57.Edible part of mango is
(a)Epicarp
(b)Mesocarp(c)Endocarp(d)Receptacle
58.Edible part of tomato is
(a)Epicarp
(b)Pericarp \& placenta(c)Mesocarp(d)Thalamus
59.The pollen grain is
(a)An immature male gametophyte
(b)A mature male gametophyte(c)Partially developed male gametophyte (d)Last stage of male gametophyte
60.Collar like outgrowth arising from the base of ovule and forming a sort of third integument is known as
(a)Coma
(b)Caruncle (c)Aril(d)Operculum
61.Pollination by wind is called
(a)Geitnogamy(b)Anemophily(c)Autogamy (d)None of the above
62.Double fertilization is a characteristic of
(a)Gymnosperms(b)Bryophytes(c)Angiosperms
(d)Pteridophytes
63.Formation of fruits without fertilization is known as or Ovary $\xrightarrow{\text { No fertiliation }}$ Fruit
(a)Parthenocarpy(b)Parthenogenesis(c)Polyembryony (d)Polygamy
64.Cell wall is absent in
(a)Gametes(b)Amoeba (c)Mycoplasma (d)All of these
65.Cell wall is absent in
(a)Plants
(b)Animals(c)Mucor(d)Mango
66.Which is correct for the structure of cell wall of bacteria and fungi
(a)Both are made up of cellulose (b)Both have mucopeptide
(c)Both are made up of N -acetylglucosamine
(d)None of these
67.The homologous chromosomes follow the process of synapsis in the stage or Pairing of homologous chromosome takes place in
(a)Leptotene(b)Zygotene(c)Diplotene(d)Pachytene
68.Crossing over is advantageous because it brings about
(a)Variation(b)Linkage(c)Inbreeding(d)Stability
69.The process of mitosis can be studied in
(a)Onion root tip(b)Garlic root tip
(c)Tendril tip(d)All of the above
70.The conducting tissues of the plants are
(a)Xylem
(b)Phloem
(c)Xylem and phloem both
(d)Sclerenchyma
47. Exchange of substances between individual cells and their environments takes place by
(a)Osmosis (b)Diffusion(c)Active transport(d)All of these
72.Gray speck disease in oats takes place by the deficiency of
(a)Zinc(b)Copper(c)Potassium(d)Manganese
73.Boron in green plants assists in
(a)Sugar transport(b)Activation of enzymes
(c)Acting as enzyme cofactor (d)Photosynthesis
74.In which plant Calvin experimented by radioactive isotopy to discover the stable product of C_{3} cycle
(a)Chlorella(b)Cycas (c)Carrot(d)Tobacco
75.The first stable compound of dark reaction of photosynthesis is
(a)Phosphoglyceraldehyde(b)Phosphoglyceric acid
(c)Fractose
(d)Starch
76.Organism which can respire in absence of O_{2} is
(a)Chlorella(b)Solanum(c)Saccharum(d)Saccharomyces
77.Cyanide resistant pathway is
(a)Anaerobic respiration(b)Aerobic respiration
(c)Both (a) and (b)(d)None of these
78.Mendel chose pea plants because
(a)They were cheap
(b)They were having seven pairs of contrasting characters
(c)They were easily available(d)Of great economic importance
79.How many pairs of contrasting characters in pea pod were chosen by Mendel
(a)2 (b)3
(c) 4
(d)7
80.The genes controlling seven traits in pea studied by Mendel were later found to be located on following number of chromosomes
(a)Seven
(b)Four (c)Five (d)Six
81.Chiasmata firstly seen in
(a)Leptotene(b)Zygotene(c)Pechytene(d)Diplotene
82.Crossing-over occurs in the
(a)Leptotene stage(b)Pachytene stage
(c)Anaphase stage(d)Diakinesis stage
83.Number of linkage group in Pisum sativum is
(a)2 (b)5
(c)7
(d) 9
84.Sexual reproduction leads to
(a)Genetic recombination(b)Polyploidy
(c)Aneuploidy (d)Euploidy
85.Break through of the year 2002
(a)cDNA
(b) $16 \operatorname{SrRNA}(\mathrm{c}) r \mathrm{DNA}(\mathrm{d}) m i \mathrm{RNA}$
86.Uridine monophosphate is found in
(a)Centrosome(b)Lysosome(c)Cell wall
(d)RNA
48. Which form of RNA is most heterogeneous
(a)tRNA(b)mRNA(c)rRNA(d)hnRNA
88.Mendel's law were first published in the year
(a)1875(b)1890(c)1928(d)1866
89.Escherichia coli is an important material for genetic experiments because
(a)It is harmless(b) It is haploid
(c)It can be easily cultured(d) Both (b) and (c)
49. Which of the character is dominant in pea plant
(a)Wrinkled seeds containing tall plants
(b)Red flower containing dwarf plant
(c)Both (a) and (b)(d)Neither (a) nor (b)
91.The segregation of paired hereditary factors that Mendel postulated occurs during
(a)Anaphase of first meiotic division
(b)Metaphase of second meiotic division
(c)During interphase between two meiotic divisions
(d)Prophase of first meiotic division
92.From a cross $A A B b \times a a B b$, the genotypes $A a B B$: $A a B b: A a b b: a a b b$ will be obtained in the following ratio

$$
\text { (a) } 1: 1: 1: 1 \text { (b) } 1: 2: 1: 0 \text { (c) } 0: 3: 1: 0 \text { (d) } 1: 1: 1: 0
$$

93. Which of the following statements is correct for species
(a)The members of a species occupy the same habitat
(b)They are morphologically similar
(c)They can interbreed among themselves
(d)They cannot interbreed with members of the other species
94.Biotic succession is caused by
(a)Competition amongst species(b)Occurrence of diseases
(c)Changes is grazing habits(d)Adaptive ability to environmental changes
95.Mr. X is eating curd/yoghurt. For this food intake in a food chain he should be considered as occupying
(a)First trophic level(b)Second trophic level
(c)Third trophic level(d)Fourth trophic level
96.In which part of the open sea producers are found
(a)Aphotic zone (b)Abyssal zone(c)Photic zone (d) None of these
97.A treeless biome is
(a)Tundra
(b)Grassland(c)Desert(d)All the above
98.Photochemical smog formed in congested metropolitan cities mainly consists of
(a)Ozone, peroxyacetyl nitrate and $N O_{x}$
(b)Smoke, peroxyacetyl nitrate and SO_{2}
(c) Hydrocarbons, SO_{2} and CO_{2}
(d)Hydrocarbons, ozone and so
99.The phenomenon in which nutrient enrichment of a water body supports a dense growth of one or may organisms but decreases the species diversity is called
(a)Biological magnification(b)Species promotion
(c)Eutrophication (d) None of the above
100.Deforestation leads to
(a)Soil erosion(b)Global warming (c)Soil protection(d)Both (a) and (b)
101.Land mass occupied by forest is about or According to Indian forest policy what percentage of the land area should be under forest cover
(a)11\% (b)22\%(c)30\%(d)60\%
102.The presence of diversity at the junction of territories of two different habitats is known as
(a)Bottle neck effect(b)Edge effect(c)Junction effect(d)Pasteur effect
103.Lateral line system is present in
(a)Fish (b)Frog(c)Reptiles(d)Man

Full test-1 2020

104.Poison glands of snake are modified
(a)Sebaceousglands(b)Ceruminousglands(c)Salivary glands(d)Endocrine glands
105.The following mammal lays eggs
(a)Porcupine (b)Platypus(c)Kangaroo(d)Koala
106.The $\%$ similarity in β-chain of Hb in man and rhesus monkey is
(a)2\%
(b)
4\%(c)8\%(d)40\%
107.Carotene pigment is found in the cells of
(a)Dermis
(b)Epidermis(c)Adipose cell(d)Both 'b' and 'c'
108.Different colours of frog skin are controlled by
(a)Hormones(b)Melanocytes(c)Nervous system(d)Both 'a' and 'c'
109. Which of the following controls the peristaltic movement of the intestine
(a)Sacralplexus(b)Brachialplexus(c)Discoidalplexus (d)Auerbach's plexus
110.Protein deficiency in children is called
(a)Obesity
(b)Marasmus(c)Diabetes(d)Kwashiorkor
111.In which animal, diaphragm has no role in respiration
(a)Frog(b)Rat(c)Camel(d)Rabbit
112.Lung ventilation movements are due to
(a)Costal muscles and diaphragm(b)Costal muscles
(c)Diaphragm(d)Wall of the lungs
113.Iliac artery carries blood to the
(a)Lungs
(b)Ileum(c)Hind limbs(d)Brain
114. Which of the following has no muscular wall
(a)Artery
(b)Vein(c)Arteriole(d)Capillary
115.A kidney stone is
(a)Blockage by fats(b)Deposition of sand in kidney
(c)A salt such as oxalate crystallised in pelvis
(d)Blockage by proteins
116.Lumber vertebra are found in
(a)Neck region(b)Abdominal region
(c)Hip rigion(d)Thorax
117.The centre for sense of smell in brain is
(a)Cerebellum(b)Cerebrum(c)Olfactory lobes(d)Midbrain
118.Bats have special sensory system called
(a)Ecobalancing system(b)Echo-location system
(c)Ecoflying system(d)Econervous system
119.ACTH is secreted by
(a)Adrenal cortex(b)Adrenal medulla(c)Pituitary(d)Thymus
120.In which of the following organism testes descends into scrotum in breeding season but in nonbreeding season goes up (a)Frog(b)Kangaroo(c)Shrew(d)Bat
121.In most mammals, the testes are located in scrotal sac for
(a)Spermatogenesis (b)Sex differentiation
(c)More space to visceral organs (d)Indepndent functioning of kidney
122.The cyclic period of sexual activity in non-human female mammals is called
(a)Menstruation (b)Luteinization(c)Oogenesis(d)Estrous

123In mammals the estrogens are secreted by the Graafian follicle from its
(a)External theca(b)Internal theca(c)Zona Pellucida(d)Corona radiata
124.In human females at the time of birth there are two million ova: how many of them normally reach maturity in the course of normal reproductive life
(a)500
(b)1,000(c)2,000(d)5,000
125.Parturition duct in female is called
(a)Uterus
(b)Oviduct(c)Vagina(d)Cervix
126.In human female which of the following is incorrect
(a)Menstrual cycle takes 28 days
(b)Menopause occur at 45-55 years
(c)The ovulated egg released during pregnancy die
(d)Menstruation takes 4 days
127.If both ovaries are removed from a rat, then which hormone is decreased in blood
(a)Oxytocin (b)Estrogen(c)Prolactin(d)Gonadotrophic

128Certain compounds are released by the WBC which raise the body temperature. These compounds are known as
(a)Pyrogens(b)Histamines(c)Toxigens(d)Pathogens
129.X- rays are used in
(a)ECG (b)EEG(c)CT -Scan(d)Endoscopy
130.Drugs that cause malformation in embryo during pregnancy are called
(a)Tranquillizers(b)Teratogens (c)Alcoholic beverages(d)Nicotin
131.The endothelium of blood vessel is composed of
(a)Cuboidal epithelium(b)Squamous epithelium
(c)Columnar epithelium(d)Ciliated epithelium
132.Most of the glands of the body are of
(a)Holocrine type(b)Merocrine type(c)Apocrine type(d)None of these
133. In connective tissue, the tissue fluid is trapped between
(a)Hyaluronic acid(b)Lactic acid
(c)Sphygmo myelin(d)None of the above
134. New approach to conservation is the establishment of
(a)Sancturies(b)Reserve forests(c)National parks(d)Biosphere reserves
135.The presence of diversity at the junction of territories of two different habitats is known as
(a)Bottle neck effect(b)Edge effect(c)Junction effect(d)Pasteur effect

Physics

136.Suppose the gravitational force varies inversely as the $n^{\text {th }}$ power of distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to
(a) $R^{\left(\frac{n+1}{2}\right)}$
(b) $R^{\left(\frac{n-1}{2}\right)}$
(c) $R^{n}(\mathbf{d}) R^{\left(\frac{n-2}{2}\right)}$
137.Two sphere of mass m and M are situated in air and the gravitational force between them is F. The space around the masses is now filled with a liquid of specific gravity 3 . The gravitational force will now be
(a) F (b) $\frac{F}{3}$ (c) $\frac{F}{9}$ (d) $3 F$
138. Earth binds the atmosphere because of
(a)Gravity
(b)Oxygen between earth and atmosphere
(c)Both (a) and (b) (d)None of these
139.The x_{-t} graph shown in figure represents

(a)Constant velocity
(b)Velocity of the body is continuously changing
(c)Instantaneous velocity
(d)The body travels with constant speed upto time t_{1} and then stops
140.If force on a rocket having exhaust velocity of $300 \mathrm{~m} / \mathrm{sec}$ is 210 N , then rate of combustion of the fuel is
(a) $0.7 \mathrm{~kg} / \mathrm{s}$
(b) $1.4 \mathrm{~kg} / \mathrm{s}(\mathrm{c}) 0.07 \mathrm{~kg} / \mathrm{s}(\mathrm{d}) 10.7 \mathrm{~kg} / \mathrm{s}$
141.A player caught a cricket ball of mass 150 gm moving at the rate of $20 \mathrm{~m} / \mathrm{sec}$. if the catching process be completed in 0.1 sec the force of the blow exerted by the ball on the hands of player is
(a) 0.3 N (b) 30 N
(c) 300 N
(d) 3000 N
142.The adjacent figure is the part of a horizontally stretched net. section $A B$ is stretched with a force of 10 N . The tensions in the sectipgs $B \in$ and $B F$ are
(a) $10 \mathrm{~N}, 11 \mathrm{~N}$
(b) $10 \mathrm{~N}, 6 \mathrm{~N}$
(c) $10 \mathrm{~N}, 10 \mathrm{~N}$

(d)Can't calculate due to insufficient data
143.Air is blown through a hole on a closed pipe containing liquid. Then the pressure will
(a)Increase on sides (b)Increase downwards
(c)Increase in all directions
(d)Never increases
144.Radius of an air bubble at the bottom of the lake is r and it becomes $2 r$ when the air bubbles rises to the top surface of the lake. If $P \mathrm{~cm}$ of water be the atmospheric pressure, then the depth of the lake is
(a) $2 p(\mathrm{~b}) 8 p(\mathrm{c}) 4 p(\mathrm{~d}) 7 p$
145.If the radius of the earth were to shrink by 1% its mass remaining the same, the acceleration due to gravity on the earth's surface would
(a)Decrease by 2% (b)Remain unchanged
(c)Increase by $2 \%(d)$ Increase by 1

146 A simple pendulum has a time period T_{1} when on the earth's surface and T_{2} when taken to a height R above the earth's surface, where R is the radius of the earth. The value of T_{2} / T_{1} is
(a)1 (b) $\sqrt{2}$ (c)4(d)2
147.In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be ($g=10 \mathrm{~ms}^{-2}$ and radius of earth is 6400 kms)
(a) $0 \mathrm{rad} \mathrm{sec}^{-1}$
(b) $\frac{1}{800} \mathrm{rad} \mathrm{sec}^{-1}$
(c) $\frac{1}{80} \mathrm{rad} \mathrm{sec}^{-1}$
(d) $\frac{1}{8} \mathrm{radsec}^{-1}$
148.If the acceleration due to gravity is $10 \mathrm{~ms}^{-2}$ and the units
of length and time are changed in kilometer and hour
respectively, the numerical value of the acceleration is
(a)360000(b)72,000(c)36,000(d)129600
149.In a Young's double slit experiment, the slit separation is 1 mm and the screen is 1 m from the slit. For a monochromatic light of wavelength 500 nm , the distance of 3rd minima from the central maxima is
(a) 0.50 mm (b) 1.25 mm (c) 1.50 mm (d) 1.75 mm
150.In Young's double-slit experiment the fringe width is β. If entire arrangement is placed in a liquid of refractive index n, the fringe width becomes
(a) $\frac{\beta}{n+1}$ (b) $n \beta$ (c) $\frac{\beta}{n}$ (d) $\frac{\beta}{n-1}$
151.If force and displacement of particle in direction of force are doubled. Work would be
(a)Double (b) 4 times(c)Half(d) $\frac{1}{4}$ times
152.A body of mass 5 kg is placed at the origin, and can move only on the x -axis. A force of 10 N is acting on it in a direction making an angle of 60° with the x -axis and displaces it along the x -axis by 4 metres. The work done by the force is
(a) $2.5 \mathrm{~J}(\mathrm{~b}) 7.25 \mathrm{~J}(\mathrm{c}) 40 \mathrm{~J}(\mathrm{~d}) 20 \mathrm{~J}$
153.70 calories of heat are required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required to raise the temperature of same gas through the same range $\left(30^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$ at constant volume ($R=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K}$)
(a)30 cal(b)50 cal(c)70 cal(d)90 cal
154. Number of particles is given by $n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}}$ crossing a unit area perpendicular to X-axis in unit time, where n_{1} and n_{2} are number of particles per unit volume for the value of x meant to x_{2} and x_{1}. Find dimensions of D called as diffusion constant
(a) $M^{0} L T^{2}(b) M^{0} L^{2} T^{-4}$
(c) $M^{0} L T^{-3}(\mathrm{~d}) M^{0} L^{2} T^{-1}$
155.If L, C and R represent inductance, capacitance and resistance respectively, then which of the following does not represent dimensions of frequency [IIT 1984]
(a) $\frac{1}{R C}$
(b) $\frac{R}{L}$ (c) $\frac{1}{\sqrt{L C}}$
(d) $\frac{C}{L}$
156.Work done per mol in an isothermal change is
(a) $R T \log _{10} \frac{V_{2}}{V_{1}}$ (b) $R T \log _{10} \frac{V_{1}}{V_{2}}$ (c) $R T \log _{e} \frac{V_{2}}{V_{1}}$ (d) $R T \log _{e} \frac{V_{1}}{V_{2}}$
157.In an isothermal process the volume of an ideal gas is halved. One can say that
(a)Internal energy of the system decreases
(b)Work done by the gas is positive
(c)Work done by the gas is negative
(d)Internal energy of the system increases
158.A thermodynamic process in which temperature T of the system remains constant though other variable P and V may change, is called
(a)Isochoric process
(b)Isothermal process
(c)Isobaric process
(d)None of these
159.A non-planar loop of conducting wire carrying a current I is placed as shown in the figure. Each of the straight sections of the loop is of length $2 a$. The magnetic field due to this loop at the point $P(a, 0, a)$ points in the direction
(a) $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$ (b) $\frac{1}{\sqrt{3}}(-\hat{j}+\hat{k}+\hat{i})$
(c) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
(d) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$

160.An electron moves with speed $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ along the positive x-direction in the presence of a magnetic induction $B=\hat{i}+4 \hat{j}-3 \hat{k}$ (in Tesla.) The magnitude of the force experienced by the electron in Newton's is (charge on the electron $=1.6 \times 10^{-19} \mathrm{C}$)
(a) 1.18×10^{-13}
(b) 1.28×10^{-1}
(c) 1.6×10^{-13}
(d) 1.72×10^{-13}
161.Two magnets of equal mass are joined at right angles to each other as shown the magnet 1 has a magnetic moment 3 times that of magnet 2 . This arrangement is pivoted so that it is free to rotate in the horizontal plane. In equilibrium what angle will the magnet 1 subtend with the magnetic meridian
(a) $\tan ^{-1}\left(\frac{1}{2}\right)$
(b) $\tan ^{-1}\left(\frac{1}{3}\right)$

162.A charge q is placed at the centre of the line joining two equal charges Q. The system of the three charges will be in equilibrium, if q is equal to
(a) $-\frac{Q}{2}$ (b) $-\frac{Q}{4}$ (c) $+\frac{Q}{4}$ (d) $+\frac{Q}{2}$
163.A coil of inductance 8.4 mH and resistance 6Ω is connected to a 12 V battery. The current in the coil is 1.0 A at approximately the time
(a) 500 sec
(b) 20 sec (c) 35 milli sec (d) 1 milli sec
164. N identical spherical drops charged to the same potential v are combined to form a big drop. The potential of the new drop will be
(a) $V(\mathrm{~b}) V / N(c) V \times N$
(d) $V \times N^{2 / 3}$
165.Two charges placed in air repel each other by a force of $10^{-4} \mathrm{~N}$. When oil is introduced between the charges, the force becomes $2.5 \times 10^{-5} \mathrm{~N}$. The dielectric constant of oil is
(a2.5(b)0.25(c)2.0(d)4.0
166.In an $L R$-circuit, the inductive reactance is equal to the resistance R of the circuit. An e.m.f. $E=E_{0} \cos (\omega t)$ applied to the circuit. The power consumed in the circuit is
(a) $\frac{E_{0}^{2}}{R}$
(b) $\frac{E_{0}^{2}}{2 R}$
(c) $\frac{E_{0}^{2}}{4 R}$
(d) $\frac{E_{0}^{2}}{8 R}$
167.The colour sequence in a carbon resistor is red, brown, orange and silver. The resistance of the resistor is
(a) $21 \times 10^{3} \pm 10 \%$ (b) $23 \times 10^{1} \pm 10$
(c) $21 \times 10^{3} \pm 5 \%$ (d) $12 \times 10^{3} \pm 5 \%$
168.A thick wire is stretched so that its length become two times. Assuming that there is no change in its density, then what is the ratio of change in resistance of wire to the initial resistance of wire
(a)2:1
(b) $4: 1$ (c)
3:1(d)1:4
169.A copper rod of length l is rotated about one end perpendicular to the magnetic field B with constant angular velocity ω. The induced e.m.f. between the two ends is
(a) $\frac{1}{2} B \omega l^{2}$
(b) $\frac{3}{4} B \omega l^{2}$
(c) $B \omega l^{2}$
(d) $2 B \omega l^{2}$
170.The valence of an impurity added to germanium crystal in order to convert it into a P-type semi conductor is
(a)6(b)5(c)4(d)3

Full test-1 2020

171. In a semiconductor, the concentration of electrons is $8 \times 10^{14} / \mathrm{cm}^{3}$ and that of the holes is $5 \times 10^{12} \mathrm{~cm}^{3}$. The semiconductor is
(a) P-type
(b) N-type(c)Intrinsic(d)PNP-type
172. Which state of triply ionised Baryllium $\left(B^{e^{+++}}\right)$has the same orbital radius as that of the ground state of hydrogen
(a) $n=4$ (b) $n=3$ (c) $n=2$ (d) $n=1$
173.The ratio of areas within the electron orbits for the first excited state to the ground state for hydrogen atom is
(a)16:1(b)18:1(c)4:1(d)2:1
174.Two rods (one semi-circular and other straight) of same material and of same cross-sectional area are joined as shown in the figure. The points A and B are maintained at different temperature. The ratio of the heat transferred through a cross-section of a semi-circular rod to the heat transferred through a cross section of the straight rod in a given time is
(a)2: π
(b) $1: 2$
(c) $\pi: 2$

(d) $3: 2$
175.A sphere, a cube and a thin circular plate, all made of the same material and having the same mass are initially heated to a temperature of $1000^{\circ} \mathrm{C}$. Which one of these will cool first (a)Plate (b) Sphere (c)Cube(d) None of these
176.An object 2.5 cm high is placed at a distance of 10 cm from a concave mirror of radius of curvature 30 cm The size of the image is
(a) 9.2 cm (b) 10.5 cm (c) 5.6 cm (d) 7.5 cm
177.For a real object, which of the following can produced a real image
(a)Planemirror(b)Concavelens(c)Convexmirror(d)Concave mirror
178.An object of length 6 cm is placed on the principle axis of a concave mirror of focal length f at a distance of $4 f$. The length of the image will be
(a) 2 cm (b) 12 cm (c) 4 cm (d) 1.2 cm
179.In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is (a) 2λ (b) $\frac{2 \lambda}{3}$ (c) $\frac{\lambda}{3}$ (d) λ
173. The time period of rotation of the sun is 25 days and its radius is $7 \times 10^{8} \mathrm{~m}$. The Doppler shift for the light of wavelength $6000 \AA$ emitted from the surface of the sun will be
(a) $0.04 \AA(\mathrm{~b}) 0.40 \AA(\mathrm{c}) 4.00 \AA(\mathrm{~d}) 40.0 \AA$

1	a	2	a	3	b	4	b	5	a
6	b	7	a	8	a	9	b	10	a
11	c	12	b	13	a	14	a	15	b
16	b	17	d	18	b	19	c	20	b
21	a	22	C	23	c	24	c	25	c
26	d	27	a	28	B,c	29	c	30	d
31	b	32	b	33	a	34	d	35	c
36	a	37	b	38	c	39	a	40	b
41	d	42	c	43	b	44	c	45	c
46	b	47	d	48	d	49	a	50	d
51	d	52	d	53	b	54	a	55	a
56	d	57	b	58	b	59	c	60	c
61	b	62	c	63	a	64	d	65	b
66	c	67	b	68	a	69	d	70	c
71	b	72	d	73	a	74	a	75	ab
76	d	77	a	78	b	79	a	80	b
81	d	82	b	83	c	84	a	85	d
86	d	87	d	88	d	89	d	90	d
91	a	92	b	93	d	94	d	95	c
96	C	97	d	98	b	99	c	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	d
$\begin{aligned} & 10 \\ & 1 \end{aligned}$	c	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	b	$\begin{aligned} & 10 \\ & 3 \end{aligned}$	a	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	c	$\begin{aligned} & 10 \\ & 5 \end{aligned}$	b
$\begin{aligned} & 10 \\ & 6 \\ & \hline \end{aligned}$	d	$\begin{aligned} & 10 \\ & 7 \end{aligned}$	d	$\begin{aligned} & 10 \\ & 8 \end{aligned}$	a	$\begin{aligned} & 10 \\ & 9 \end{aligned}$	d	$\begin{aligned} & 11 \\ & 0 \end{aligned}$	d
$\begin{aligned} & 11 \\ & 1 \end{aligned}$	a	$\begin{aligned} & 11 \\ & 2 \end{aligned}$	a	$\begin{aligned} & 11 \\ & 3 \end{aligned}$	C	$\begin{aligned} & 11 \\ & 4 \end{aligned}$	d	$\begin{aligned} & 11 \\ & 5 \end{aligned}$	C
$\begin{aligned} & 11 \\ & 6 \end{aligned}$	b	$\begin{aligned} & 11 \\ & 7 \end{aligned}$	c	$\begin{aligned} & 11 \\ & 8 \end{aligned}$	b	$\begin{aligned} & 11 \\ & 9 \end{aligned}$	c	$\begin{aligned} & 12 \\ & 0 \end{aligned}$	d
$\begin{aligned} & 12 \\ & 1 \end{aligned}$	a	$\begin{aligned} & 12 \\ & 2 \end{aligned}$	d	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	b	$\begin{aligned} & 12 \\ & 4 \end{aligned}$	a	$\begin{aligned} & 12 \\ & 5 \end{aligned}$	c
$\begin{aligned} & 12 \\ & 6 \end{aligned}$	C	$\begin{aligned} & 12 \\ & 7 \end{aligned}$	b	$\begin{aligned} & 12 \\ & 8 \end{aligned}$	a	$\begin{aligned} & 12 \\ & 9 \end{aligned}$	C	$\begin{aligned} & 13 \\ & 0 \end{aligned}$	b
$\begin{aligned} & 13 \\ & 1 \end{aligned}$	b	$\begin{aligned} & 13 \\ & 2 \end{aligned}$	b	$\begin{aligned} & 13 \\ & 3 \end{aligned}$	a	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	d	$\begin{aligned} & 13 \\ & 5 \end{aligned}$	b
$\begin{aligned} & 13 \\ & 6 \end{aligned}$	a	$\begin{aligned} & 13 \\ & 7 \end{aligned}$	a	$\begin{aligned} & 13 \\ & 8 \end{aligned}$	a	$\begin{aligned} & 13 \\ & 9 \end{aligned}$	d	$\begin{aligned} & 14 \\ & 0 \end{aligned}$	a
$\begin{aligned} & 14 \\ & 1 \end{aligned}$	b	$\begin{aligned} & 14 \\ & 2 \end{aligned}$	C	$\begin{aligned} & 14 \\ & 3 \end{aligned}$	C	$\begin{aligned} & 14 \\ & 4 \end{aligned}$	d	$\begin{aligned} & 14 \\ & 5 \end{aligned}$	c
$\begin{aligned} & 14 \\ & 6 \end{aligned}$	d	$\begin{aligned} & 14 \\ & 7 \end{aligned}$	b	$\begin{aligned} & 14 \\ & 8 \end{aligned}$	d	$\begin{aligned} & 14 \\ & 9 \end{aligned}$	b	$\begin{aligned} & 15 \\ & 0 \end{aligned}$	c

$\begin{aligned} & 15 \\ & 1 \end{aligned}$	b	$\begin{aligned} & 15 \\ & 2 \end{aligned}$	d	$\begin{aligned} & 15 \\ & 3 \end{aligned}$	b	$\begin{aligned} & 15 \\ & 4 \end{aligned}$	d	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	d
$\begin{aligned} & 15 \\ & 6 \end{aligned}$	c	$\begin{aligned} & 15 \\ & 7 \end{aligned}$	c	$\begin{aligned} & 15 \\ & 8 \end{aligned}$	b	$\begin{aligned} & 15 \\ & 9 \end{aligned}$	d	$\begin{aligned} & 16 \\ & 0 \end{aligned}$	c
$\begin{aligned} & 16 \\ & 1 \end{aligned}$	b	$\begin{aligned} & 16 \\ & 2 \end{aligned}$	b	$\begin{aligned} & 16 \\ & 3 \end{aligned}$	d	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	d	$\begin{aligned} & 16 \\ & 5 \end{aligned}$	d
$\begin{aligned} & 16 \\ & 6 \end{aligned}$	C	$\begin{aligned} & 16 \\ & 7 \end{aligned}$	a	$\begin{aligned} & 16 \\ & 8 \end{aligned}$	C	$\begin{aligned} & 16 \\ & 9 \end{aligned}$	a	$\begin{aligned} & 17 \\ & 0 \end{aligned}$	d
$\begin{aligned} & 17 \\ & 1 \end{aligned}$	b	$\begin{aligned} & 17 \\ & 2 \end{aligned}$	C	$\begin{aligned} & 17 \\ & 3 \end{aligned}$	d	$\begin{aligned} & 17 \\ & 4 \end{aligned}$	a	$\begin{aligned} & 17 \\ & 5 \end{aligned}$	a
$\begin{aligned} & 17 \\ & 6 \end{aligned}$	d	$\begin{aligned} & 17 \\ & 7 \end{aligned}$	d	$\begin{aligned} & 17 \\ & 8 \end{aligned}$	a	$\begin{aligned} & 17 \\ & 9 \end{aligned}$	a	$\begin{aligned} & 18 \\ & 0 \end{aligned}$	a

